EatWellBuzz Health News Studies & Findings Application of machine learning algorithms and SHAP explanations to predict fertility preference among reproductive women in Somalia
Studies & Findings

Application of machine learning algorithms and SHAP explanations to predict fertility preference among reproductive women in Somalia

Application of machine learning algorithms and SHAP explanations to predict fertility preference among reproductive women in Somalia

  • Ahinkorah, B. O. et al. Socio-economic and demographic factors associated with fertility preferences among women of reproductive age in ghana: Evidence from the 2014 demographic and health survey. Reproduct. Health. 18 (1), 2 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Odusina, E. K. et al. Fertility preferences among couples in nigeria: A cross sectional study. Reproduct. Health. 17 (1), 92 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duminy, J. et al. Urban family planning in Low- and Middle-Income countries: A critical scoping review. Front. Glob. Womens Health. 2, 749636 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hellwig, F. et al. Policies for expanding family planning coverage: Lessons from five successful countries. Front. Public. Health. 12, 1339725 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, M. N. et al. Improving the uptake of contraception. Somalia Bull. World Health Organ. 102 (1), 75 (2023).

    PubMed 

    Google Scholar
     

  • Mahasneh, I. & Ebrahim, F. The epidemiological declining in the human fertility rate in the Arab world for 10 years period 2011–2021. Middle East. Fertil. Soc. J. 29 (1), 47 (2024).


    Google Scholar
     

  • Ley, C. et al. Machine learning and conventional statistics: Making sense of the differences. Knee Surg. Sports Traumatol. Arthrosc. 30 (3), 753–757 (2022).

    PubMed 

    Google Scholar
     

  • Rajula, H. S. R., Verlato, G., Manchia, M., Antonucci, N. & Fanos, V. Comparison of conventional statistical methods with machine learning in medicine: Diagnosis, drug development, and treatment. Medicina 56 (9), 455 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Feretzakis, G. et al. Integrating Shapley values into machine learning techniques for enhanced predictions of hospital admissions. Appl. Sci. 14 (13), 5925 (2024).

    CAS 

    Google Scholar
     

  • GhoshRoy, D., Alvi, P. A. & Santosh, K. C. Unboxing industry-standard ai models for male fertility prediction with SHAP. Healthcare 11 (7), 929 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • GhoshRoy, D., Alvi, P. A. & Santosh, K. C. Explainable AI to predict male fertility using extreme gradient boosting algorithm with SMOTE. Electronics 12 (1), 15 (2023).


    Google Scholar
     

  • Schmeis Arroyo, V., Iosa, M., Antonucci, G. & De Bartolo, D. Predicting male infertility using artificial neural networks: A review of the literature. Healthcare 12 (7), 781 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • GhoshRoy, D., Alvi, P. A. & Santosh, K. AI tools for assessing human fertility using risk factors: A state-of-the-art review. J. Med. Syst. 47 (1), 91 (2023).

    PubMed 

    Google Scholar
     

  • GhoshRoy, D., Alvi, P. A. & Santosh, K. Leveraging sampling schemes on skewed class distribution to enhance male fertility detection with ensemble AI learners. Int. J. Pattern Recogn. Artif. Intell. 38 (02), 2451003 (2024).


    Google Scholar
     

  • Doupe, P., Faghmous, J. & Basu, S. Machine learning for health services researchers. Value Health. 22 (7), 808–815 (2019).

    PubMed 

    Google Scholar
     

  • Ponce-Bobadilla, A. V., Schmitt, V., Maier, C. S., Mensing, S. & Stodtmann, S. Practical guide to SHAP analysis: Explaining supervised machine learning model predictions in drug development. Clin. Transl Sci. 17 (11), e70056 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahmed, Z. et al. Understanding the factors affecting the humanitarian health and nutrition response for women and children in Somalia since 2000: A case study. Confl. Health. 14 (1), 35 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Duale, H. A., Farah, A., Salad, A., Gele, S. & Gele, A. Constraints to maternal healthcare access among pastoral communities in the Darussalam area of Mudug region, Somalia a qualitative study. Front. Public. Health. 11, 1210401 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wulifan, J. K., Dordah, A. D. & Sumankuuro, J. Nomadic pastoralists’ experience accessing reproductive and maternal healthcare services in low and middle-income countries: A contextual scoping review. Pastoralism 12 (1), 47 (2022).


    Google Scholar
     

  • Cronin, C. J., Guilkey, D. K. & Speizer, I. S. The effects of health facility access and quality on family planning decisions in urban Senegal. Health Econ. 27 (3), 576–591 (2018).

    PubMed 

    Google Scholar
     

  • Yücel, U., Çiçeklioğlu, M., Öcek, Z. A. & Varol, Z. S. Access to primary health care family planning services and contraceptive use in disadvantaged women: A qualitative study. Eur. J. Contracept. Reproduct. Health Care. 25 (5), 327–333 (2020).


    Google Scholar
     

  • Adler, A., Biggs, M. A., Kaller, S., Schroeder, R. & Ralph, L. Changes in the frequency and type of barriers to reproductive health care between 2017 and 2021. JAMA Netw. Open. 6 (4), e237461–e237461 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shatilwe, J. T., Kuupiel, D. & Mashamba-Thompson, T. P. Evidence on access to healthcare information by women of reproductive age in low-and middle-income countries: Scoping review. Plos One. 16 (6), e0251633 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dotse-Gborgbortsi, W. et al. Distance is a big problem: A geographic analysis of reported and modelled proximity to maternal health services in Ghana. BMC Pregnancy Childbirth. 22 (1), 672 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mseke, E. P., Jessup, B. & Barnett, T. Impact of distance and/or travel time on healthcare service access in rural and remote areas: A scoping review. J. Transp. Health. 37, 101819 (2024).


    Google Scholar
     

  • Tanou, M., Kishida, T. & Kamiya, Y. The effects of geographical accessibility to health facilities on antenatal care and delivery services utilization in benin: A cross-sectional study. Reproduct. Health. 18, 205 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chatterjee, E. & Sennott, C. Fertility intentions and maternal health behaviour during and after pregnancy. Popul. Stud. 74 (1), 55–74 (2020).


    Google Scholar
     

  • Shumet, T. & Geda, N. R. Impacts of inequalities in utilization of key maternal health service on fertility preference among high parity women in four selected regions of Ethiopia. BMC Women’s Health. 24 (1), 590 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dahab, R. & Sakellariou, D. Barriers to accessing maternal care in low income countries in Africa: A systematic review. Int. J. Environ. Res. Public Health. 17 (12), 4292 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Uddin, S., Khan, A., Hossain, M. E. & Moni, M. A. Comparing different supervised machine learning algorithms for disease prediction. BMC Med. Inf. Decis. Mak. 19 (1), 281 (2019).


    Google Scholar
     

  • Berger, H. & Dasré, A. Religious affiliation, education, and fertility in sub-Saharan Africa. World Dev. 184, 106723 (2024).


    Google Scholar
     

  • Bongaarts, J. Trends in fertility and fertility preferences in sub-Saharan Africa: The roles of education and family planning programs. Genus 76 (1), 32 (2020).


    Google Scholar
     

  • Idris, I. B. et al. Women’s autonomy in healthcare decision making: A systematic review. BMC Womens Health. 23, 643 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tan, K. et al. Effects of economic uncertainty and socioeconomic status on reproductive timing: A life history approach. Curr. Res. Ecol. Soc. Psychol. 3, 100040 (2022).


    Google Scholar
     

  • Guo, C., Yang, P. & Mu, Y. Expectations of improvement of socioeconomic status throughout the life course as a component for promoting fertility intentions. China CDC Wkly. 5 (16), 365 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matera, C. et al. Perceived economic uncertainty and fertility intentions in couples: A dyadic extension of the theory of planned behaviour. J. Fam Econ. Iss. 44 (4), 790–806 (2023).


    Google Scholar
     

  • Kigo, S. N., Omondi, E. O. & Omolo, B. O. Assessing predictive performance of supervised machine learning algorithms for a diamond pricing model. Sci. Rep. 13 (1), 17315 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prathap, K. R. & Bhavani, R. Study comparing classification algorithms for loan approval predictability (Logistic regression, XG boost, random forest, decision Tree). J. Surv. Fisheries Sci. 10 (1S), 2438–2447 (2023).


    Google Scholar
     

  • Band, S. S. et al. Application of explainable artificial intelligence in medical health: A systematic review of interpretability methods. Inf. Med. Unlocked. 40, 101286 (2023).


    Google Scholar
     

  • Paudel, P., Saud, R., Karna, S. K. & Bhandari, M. Determining the Major Contributing Features to Predict Breast Cancer Imposing ML Algorithms with LIME and SHAP. In 2023 International Conference on Electrical, Computer and Energy Technologies (ICECET) [Internet]. IEEE; 2023 [cited 2024 Nov 23]. pp. 1–7. https://ieeexplore.ieee.org/abstract/document/10389217/

  • Sowjanya, A. M. & Mrudula, O. Effective treatment of imbalanced datasets in health care using modified SMOTE coupled with stacked deep learning algorithms. Appl. Nanosci. 13 (3), 1829–1840 (2023).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kassaw, E. A., Abate, B. B., Enyew, B. M. & Sendekie, A. K. The application of machine learning approaches to classify and predict fertility rate in Ethiopia. Sci. Rep. 15 (1), 2562 (2025).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tadese, Z. B. et al. Exploring machine learning algorithms for predicting fertility preferences among reproductive women in Nigeria. Front. Digit. Health 6:1495382 .

  • Barnett-Itzhaki, Z. et al. Machine learning vs. classic statistics for the prediction of IVF outcomes. J. Assist. Reprod. Genet. 37 (10), 2405–2412 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hassan, A. A., Muse, A. H. & Chesneau, C. Machine learning study using 2020 SDHS data to determine poverty determinants in Somalia. Sci. Rep. 14 (1), 5956 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Islam, T., Meade, N., Carson, R. T., Louviere, J. J. & Wang, J. The usefulness of socio-demographic variables in predicting purchase decisions: Evidence from machine learning procedures. J. Bus. Res. 151, 324–338 (2022).


    Google Scholar
     

  • Afferri, A. et al. Policy action points and approaches to promote fertility care in the gambia: Findings from a mixed-methods study. PLOS ONE. 19 (5), e0301700 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohamud, L. A. & Nasir, J. A. Role of proximate determinants on the fertility rate among currently married women in Somalia via Bongaart’s model: Findings from 2018-19 Sdhs Data. 2024 [cited 2025 Jan 8]. https://www.researchsquare.com/article/rs-4752428/latest

  • Nyarko, S. H. Socioeconomic determinants of cumulative fertility in Ghana. Plos One. 16 (6), e0252519 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Khan, N. U. et al. Fertility patterns in pakistan: A comparative analysis of family planning trends across different geographic regions. Rural Remote Health. 24 (3), 1–8 (2024).


    Google Scholar
     

  • Lotfi, R., Rajabi Naeeni, M., Rezaei, N., Farid, M. & Tizvir, A. Desired numbers of children, fertility preferences and related factors among couples who referred to pre-marriage counseling in Alborz province, Iran. Int. J. Fertil. Steril. 11 (3), 211–219 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Weigard, A. & Spencer, R. J. Benefits and challenges of using logistic regression to assess neuropsychological performance validity: Evidence from a simulation study. Clin. Neuropsychol. 37 (1), 34 (2023).

    PubMed 

    Google Scholar
     

  • Doepke, M., Hannusch, A., Kindermann, F. & Tertilt, M. The economics of fertility: A new era. In Handbook of the Economics of the Family [Internet]. Elsevier; 2023 [cited 2025 Jan 13]. pp. 151–254. https://www.sciencedirect.com/science/article/pii/S2949835X23000034

  • Jiang, Y. & Yang, F. Motherhood health penalty: Impact of fertility on physical and mental health of Chinese women of childbearing age. Front. Public. Health. 10, 787844 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seshadri, S., Morris, G., Serhal, P. & Saab, W. Assisted conception in women of advanced maternal age. Best Pract. Res. Clin. Obstet. Gynecol. 70, 10–20 (2021).

    CAS 

    Google Scholar
     

  • Ahmed, J. H. J. The social context of family size decisions: The experiences of Somali and Sudanese migrant communities [Internet] [PhD Thesis]. Aston University; [cited 2025 Jan 13]. (2022). https://publications.aston.ac.uk/id/eprint/44679/

  • Sanogo, N. A., Fantaye, A. W. & Yaya, S. Universal health coverage and facilitation of equitable access to care in Africa. Front. Public. Health. 7, 102 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Socio-economic and demographic. factors associated with fertility preferences among women of reproductive age in Ghana: Evidence from the 2014 Demographic and Health Survey | Reproductive Health | Full Text [Internet]. 2024 [cited 2024 May 19]. https://reproductive-health-journal.biomedcentral.com/articles/https://doi.org/10.1186/s12978-020-01057-9

  • Ning, Y. et al. Shapley variable importance cloud for interpretable machine learning. Patterns [Internet]. 2022 [cited 2024 Dec 31];3(4). https://www.cell.com/patterns/fulltext/S2666-3899(22)00025-3

  • Nitsche, N. & Hayford, S. R. Preferences, partners, and parenthood: Linking early fertility desires, marriage timing, and achieved fertility. Demography 57 (6), 1975–2001 (2020).

    PubMed 

    Google Scholar
     

  • Götmark, F. & Andersson, M. Human fertility in relation to education, economy, religion, contraception, and family planning programs. BMC Public. Health. 20 (1), 265 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frola, A., Delprato, M. & Chudgar, A. Lack of educational access, women’s empowerment and Spatial education inequality for the Eastern and Western Africa regions. Int. J. Educ. Dev. 104, 102939 (2024).


    Google Scholar
     

  • Rajpoot, N. K., Singh, P. D., Pant, B. & Tripathi, V. The future of healthcare: A machine learning revolution. In 2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI) [Internet]. Raipur, India: IEEE; [cited 2024 Nov 23]. pp. 1–6. (2023). https://ieeexplore.ieee.org/document/10489320/

  • Bozkurt, S. et al. Reporting of demographic data and representativeness in machine learning models using electronic health records. J. Am. Med. Inform. Assoc. 27 (12), 1878–1884 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

    Exit mobile version